Fundamental Studies of Molybdenum and Tungsten Methylidene and Metallacyclobutane Complexes

نویسندگان

  • Richard R. Schrock
  • Annie J. Jiang
  • Smaranda C. Marinescu
  • Jeffrey H. Simpson
  • Peter Müller
چکیده

Addition of ethylene to Mo(NAr)(CHCMe2Ph)(OHIPT)(Pyr) (NAr = N-2,6-i-Pr2C6H3, OHIPT = O-2,6-(2,4,6-i-Pr3C6H2)2C6H3, Pyr = NC4H4) led to the trigonal bipyramidal metallacyclobutane complex, Mo(NAr)(C3H6)(OHIPT)(Pyr), in which the imido and aryloxide ligands occupy axial positions. Mo(NAr)(C3H6)(OHIPT)(Pyr) loses ethylene to give isolable Mo(NAr)(CH2)(OHIPT)(Pyr). W(NAr)(CH2)(OTPP)(Me2Pyr) (OTPP = O-2,3,5,6-Ph4C6H, Me2Pyr = 2,5-Me2NC4H2) was prepared similarly. Single crystal X-ray studies of Mo(NAr)(CH2)(OHIPT)(Pyr) and W(NAr)(CH2)(OTPP)(Me2Pyr) show that they are monomers that contain an η-pyrrolide ligand and a methylidene ligand in which the M-C-Hanti angle is smaller than the M-C-Hsyn angle, consistent with an agostic interaction between CHanti and the metal. Attempts to prepare analogous Mo(NAd)(CH2)(OHIPT)(Pyr) (Ad = 1-adamantyl) yielded only the ethylene complex, Mo(NAd)(C2H4)(OHIPT)(Pyr). W(NAr)(CH2)(OTPP)(Me2Pyr) (Ar = 2-t-BuC6H4) was isolated upon loss of ethylene from W(NAr)(C3H6)(OTPP)(Me2Pyr),

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monoaryloxide Pyrrolide (MAP) Imido Alkylidene Complexes of Molybdenum and Tungsten That Contain 2,6-Bis(2,5-R2-pyrrolyl)phenoxide (R = i-Pr, Ph) Ligands and an Unsubstituted Metallacyclobutane on Its Way to Losing Ethylene

We report the synthesis of Mo and W MAP complexes that contain O-2,6-(2,5-R2-pyrrolyl)2C6H3 (2,6-dipyrrolylphenoxide or ODPPR) ligands in which R = i-Pr, Ph. W(NAr)(CH-t-Bu)(Pyr)(ODPPPh) (4a; Ar = 2,6-disopropylphenyl, Pyr = pyrrolide) reacts readily with ethylene to yield a metallacyclobutane complex, W(NAr)(C3H6)(Pyr)(ODPPPh) (5). The structure of 5 in the solid state shows that it is approxi...

متن کامل

Preparation and Characterization of Supported Molybdenum and Tungsten Schiff Base Complexes on MCM-41 as Nanocatalysts for the Epoxidation of Olefins

Two new heterogenized epoxidation nanocatalysts based on molybdenum and tungsten compounds were prepared withcovalent grafting of MCM-41 with 3-aminoropropyl trimethoxysilane and subsequent reaction with diphenylphosphinobenzaldehyde and complexation with M (Mo, W)O2(acac)2. X-ray diffraction and nitrogen sorption analyses revealed the preservation of the textural properti...

متن کامل

Fundamental studies of tungsten alkylidene imido monoalkoxidepyrrolide complexes.

Two diastereomers of the monoalkoxidepyrrolide (MAP) species, W(NAr)(CH(2))(Me(2)Pyr)(OR*) (1; Ar = 2,6-diisopropylphenyl, Me(2)Pyr = 2,5-dimethylpyrrolide, OR* = (R)-3,3'-dibromo-2'-(tert-butyldimethylsilyloxy)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2-olate), were generated through addition of R*OH to W(NAr)(CH(2))(Me(2)Pyr)(2). The unsubstituted tungstacyclobutane species, W(NAr)(C(3)H...

متن کامل

Comparison of doped combination zirconium-tungsten, zirconium- molybdenum and molybdenum-tungsten on single-wall vanadium oxide nanotube in hydrogen gas adsorption

In this study, doped vanadium oxide nanotubes were evaluated using different software to study the absorption of hydrogen gas. Vanadium oxide nanotubes are one of the options for absorption and storage hydrogen gas. In this research study for the first time, the Monte Carlo simulation was used to investigate the hydrogen gas absorption behavior in molybdenum-tungsten, molybdenum-zirconium and z...

متن کامل

Alkyne metathesis by molybdenum and tungsten alkylidyne complexes.

Alkyne metathesis by molybdenum and tungsten alkylidyne complexes is now ~45 years old. Progress in the practical aspects of alkyne metathesis reactions with well-defined complexes, as well as applications, in the last decade, guarantees that it is destined to become a useful method for the synthesis of organic molecules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010